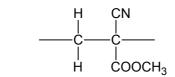


GCE MARKING SCHEME


CHEMISTRY AS/Advanced

JANUARY 2012

GCE Chemistry – CH2

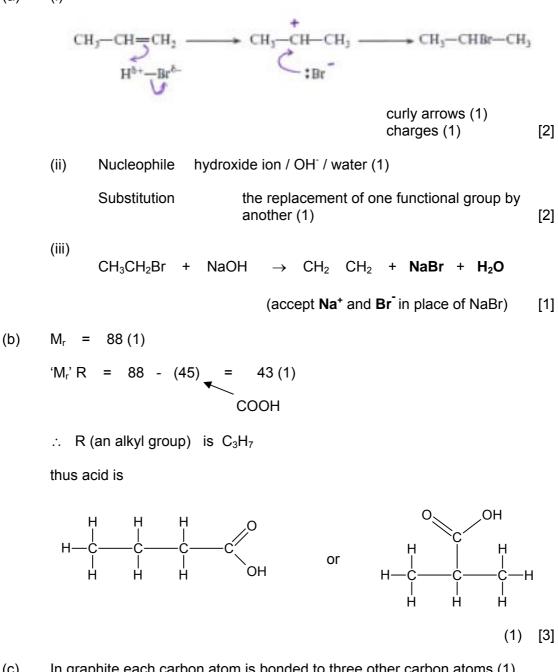
SECTION A

Q.1	They show a change in properties with a change in conditions (1)						
	This o	This change in properties is reversible (1)					
Q.2	Equation pH		2Na + 2H ₂ O \rightarrow 2NaOH + H ₂ (1) Accept any value 8 to 14 inclusive / above 7 (1)	[2]			
	•						
Q.3	4-met	thylpent	t-2-ene	[1]			
• •		0		[4]			
Q.4	(a)	Orang	ge to green	[1]			
	(b)	(i)	C—H	[1]			
		(ii)	C	[1]			
		(iii)	1650 to 1750 cm ⁻¹ $C = O$	[1]			
Q.5			H CN				

[1]

SECTION A TOTAL [10]

SECTION B


	sod	ium ion Any of crosses shown	n
	(ii)	6 (not 6,6)	[1]
(b)	Wash	e mixture (before filtering) / heat (1) the mudstone / residue in the filter paper with water (and add the ngs to the filtrate) (1)	[2]
(C)	(i)	Add AgNO ₃ / Ag ⁺ ions (assume aqueous) (1) White precipitate (1)	[2]
	(ii)	Add (aqueous) sodium hydroxide (solution) (1) gives (faint) white precipitate with kainite, no reaction with rock salt (1)	
		OR	
		Add barium chloride / barium nitrate / barium ions (1) gives white precipitate with kainite, no reaction with rock salt (1)	
		OR	
		Add potassium carbonate / carbonate ions (1) gives white precipita with kainite, no reaction with rock salt (1)	te [2]
(d)	(i)	(The gaining of an electron) gives a full / stable (outer) electron she	ell [1]
	(ii)	There is less attraction between the nucleus and the (incoming) electron / oxidising power decreases down the group (increases in size is a neutral answer)	[1]
(e)	(i)	The C–Cl bond (present in 1,1,1-trichloroethane) is weaker than th C–H bond (in methylcyclohexane) (1) and is broken by UV light / radicals present (that damage the ozone layer) (1)	ne [2]
	(ii)	Reagent(s)Bromine (aqueous) (1)Observationred/ brown \rightarrow colourless / decolourised (1)	[2]

Q.7	(a)	(i)	% of solid remaining = $\frac{2.01 \times 100}{3.24}$ = 62.0 (1)	
			% decomposition = 87 (1)	[2]
		(ii)	I To avoid contamination / ensure that all Ca ²⁺ ions came from the solid	m [1]
			II So that all the calcium hydroxide that could dissolve had dissolved / to produce a saturated solution / to ensure homogeneity	[1]
		(iii)	I 0.0225	[1]
			II 0.0225 x 74.1 = 1.67 (g dm ⁻³)	[1]
		(iv)	Calcium carbonate was removed (by filtration)	[1]
	(b)		red (1) calcium' will give a flame test colour (1)	[2]
	(C)	Ca ²⁺	+ $SO_4^{2-} \rightarrow CaSO_4$	[1]
	(d)	Find c they v	out if the nano-particles have 'side effects' / further research to see if vork	[1]
	(e)	5000	tonnes of fluorapatite give 8600 tonnes of superphosphate (1)	
		but yie	eld is 93% $\therefore \frac{8600 \times 93}{100} = 7998 / 8000 \text{ (tonnes) (1)}$	[2]
	(f)	The tw shell o	wo elements both have 2 electrons in their outer energy level / valenc can both lose 2 electrons to become Ra ²⁺ / Ca ²⁺ / OWTTE	ce [1]
			Total	[14]
Q.8	(a)	(i)	(+) 7	[1]
		(ii)	M _r H ₂ O ₂ is 34.02 / 34 (1)	
			Concentration = $\frac{76.5 \times 10}{34.02}$ = 22.49 / 22.5 (mol dm ⁻³) (1)	[2]
		(iii)	A covalent bond where the electrons are not shared equally betwee the atoms / unequal electron density (1) because of differences in electronegativity between the nitrogen and hydrogen atoms (1)	en [2]
		(iv)	A (covalent) bond where both electrons come from the same / one atom	[1]
		(v)	(Nitrogen has three bonding pairs and one lone pair of electrons) a these repel each other to take up the position of minimum repulsion (1) The lone pair / bonding pair repulsion > bonding pair / bonding pair repulsion (1)	n

	(b)	(i)	It contains an unpaired electron	[1]		
		(ii)	$I \qquad \bullet \ CH_3 \ \ + \ \ Cl_2 \ \ \rightarrow \ \ CH_3CI \ \ + \ \ Cl\bullet$	[1]		
			II A radical reacts to produce a new radical (that can continue the process)	[1]		
		(iii)	C ₇ H ₁₆	[1]		
		(iv)	(Bond fission where a covalent bond breaks) and each atom receive an electron	es [1]		
			Total [13]		
Q.9	(a)	molec anothe	ydrogen bonding occurs between (1) oxygen, nitrogen or fluorine (1) of olecule and hydrogen, which is bonded to oxygen / nitrogen / fluorine of nother molecule (1)			
			es do not contain an O-H, N-H or F-H bond and cannot therefore gen bond to water molecules (1)	[4]		
		QWC	Candidates should have use 'a selection and form of writing appropriate to purpose and to complexity of subject matter'	[1]		
	(b)	(i)	The (purified) petroleum is separated by heating (1) due to the different boiling temperatures of different fractions (1)			
			OR the mixture is vaporised (1) and then condensed according to boiling temperatures (1) (as at the oil refinery)	o [2]		
		(ii)	$CuCl_2$ Cu +2 CuCl Cu +1 (1)			
			(reduction occurs when) the oxidation number becomes less positive (1)	e [2]		
	(c)	(i)	Same molecular formula but a different structural formula / structure	[1]		
		(ii)	Both of the carbon atoms of the double bond have different atoms / groups bonded to them (1) There is no free rotation about the double bond (1)	[2]		
		(iii)	M_r of compound A is 146.3 / 146 (1)	[-]		
		. ,	Cost per mole is $\frac{146.3 \times 48 \times 100}{100 \times 73}$ = £96.20 (1)			
			(Accept £96.00 per mole if M_r of 146 has been used)	[2]		

Total [14]

Q.10 (a) (i)

- In graphite each carbon atom is bonded to three other carbon atoms (1) (using covalent bonding)
 The other (outer) electron for each carbon atom is delocalised (1), throughout the structure and is able to move (1), conducting electricity
 In iodine the two iodine atoms are bonded together (using covalent bonding) and there are no free electrons to carry the charge (1)
 Mention of covalent bonding for either element (1) [5]
 - QWCLegibility of text; accuracy of spelling, punctuation and grammar;
clarity of meaning (1)Organisation of information clearly and coherently; use of specialist
vocabulary where appropriate (1)[2]

Total [15]

SECTION B TOTAL [70]